Topology and Basis
Definition (Topology) A topology on a set $X$ is a collection $\mathfrak{T}$ having the following properties: (1) $\emptyset$ and $X$ are in $\mathfrak{T}$ (...
Definition (Topology) A topology on a set $X$ is a collection $\mathfrak{T}$ having the following properties: (1) $\emptyset$ and $X$ are in $\mathfrak{T}$ (...
Theorem 3.1.13 $U \subset \mathbb{R}$ is open $\Rightarrow$ \(\exists \{I_n\}\): a finite or countable family of pairwise disjoint union of open intervals su...
Definition 3.1.1 $E$ is a subset of $\mathbb{R}$. $p\in E$ is an interior point of $E$ if there is $\epsilon >0$ such that $N_{\epsilon} (p) \subset E$. ...
Definition (Closed) A subset $A$ of a topological space $X$ is said to be closed if the set $X-A$ is open.
Theorem 3.1.13 $U \subset \mathbb{R}$ is open $\Rightarrow$ \(\exists \{I_n\}\): a finite or countable family of pairwise disjoint union of open intervals su...
Definition 3.1.1 $E$ is a subset of $\mathbb{R}$. $p\in E$ is an interior point of $E$ if there is $\epsilon >0$ such that $N_{\epsilon} (p) \subset E$. ...
Preliminaries Suppose one has an infinite plate $(\mathbb{R}^2)$ with an initial heat distribution. Let $u(x,y)$ denote the temperature of the place at posit...
Definition 1.1 Given a sequence $\{c_n\}$, let $s_n:=\sum_{k=0}^nc_k$ be the sequence of partial sums. We define $N$-th Cesaro mean $\sigma_N$ of the sequenc...
Definition 1.1 Let $f,g:\mathbb{R}\to\mathbb{C}$ be $2\pi$-periodic functions. The convolution $f*g$ of $f$ and $g$ is the function defined by $[-\pi, \pi]$ ...
Definition Let \(\{p_n\}_{n=1}^\infty\) be a sequence in $\mathbb{R}$. The sequence is a Cauchy sequence if $\forall \epsilon >0, \exists N\in \mathbb{N}$...
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition of Cantor Set For each $P_i$ is non empty compact set and $P_0 \supset P_1 \supset P_2 \cdots$. Define $P$ as follows: \(\begin{align} P := \cap_{...
Definition 1.7.2 For each positive integer $n\in \mathbb{N}$, let \(\mathbb{N}_n:=\{1,2,\ldots,n \}\). If $A$ is a set, we say (a) $A$ is finite if $A\sim \...
Distribution Function Let $X$ be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$. The distribution function (cumulative distribution functi...
Measurable function Let $(E, \mathcal{E})$ and $(F, \mathcal{F})$ be measurable spaces where $E,F,$ are sets and $\mathcal{E}$ and $\mathcal{F}$ are $\sigma...
Theorem 3.1.13 $U \subset \mathbb{R}$ is open $\Rightarrow$ \(\exists \{I_n\}\): a finite or countable family of pairwise disjoint union of open intervals su...
Definition 3.1.1 $E$ is a subset of $\mathbb{R}$. $p\in E$ is an interior point of $E$ if there is $\epsilon >0$ such that $N_{\epsilon} (p) \subset E$. ...
Definition (Closed) A subset $A$ of a topological space $X$ is said to be closed if the set $X-A$ is open.
Definition 3.1.1 $E$ is a subset of $\mathbb{R}$. $p\in E$ is an interior point of $E$ if there is $\epsilon >0$ such that $N_{\epsilon} (p) \subset E$. ...
Lemma 1
Theorem 3.2.5 (a) $K$ is compact $\Rightarrow$ $K$ is closed and bounded
Theorem 8.3.1 Suppose $\{f_n\}$ is a sequence of real-valued functions that converges uniformly to a function $f$ on a subset $E$ of $\mathbb{R}$. Let $p$ be...
Definition 4.2.1 $f:E\to \mathbb{R}$ is continuous at $p\in E$, if $\forall \epsilon >0, \exists \delta >0$ such that $|x-p|<\delta \Rightarrow |f(...
Definition 4.4.1 $E\subset \mathbb{R}, f:E\to\mathbb{R}, p$ is a limit point of $E\cap (p,\infty)$. $f$ has a right limit at $p$ if there exists a $L\in\math...
Definition 4.3.1 Let $E$ be a subset of $\mathbb{R}$ and let $f:E\to\mathbb{R}$ be a function. The function $f$ is uniformly continuous on $E$ if $\forall ...
Theorem 8.4.1 Suppose $f_n\in \mathscr{R}[a,b]$ for all $n\in\mathbb{N}$ ans suppose that the sequence $\{f_n\}$ converges uniformly to $f$ on $[a,b]$. Then ...
Definition 5.1.1 Let $I\subset \mathbb{R}$ be an interval and let $f:I\rightarrow\mathbb{R}$ be a function. Fix a $p\in I$. The derivative of $f$ at $p$ is ...
Darboux Theorem $f:[a,b]\to\mathbb{R}$ is differentiable on $[a,b]$. Assume that $f^\prime(a)<f^\prime(b)$. Then $\forall\lambda \in (f^\prime(a), f^\prim...
Theorem 4.2.13 (Intermediate Value Theorem for derivative) Let $f:I\to\mathbb{R}$ be differentiable function on the interval $I=[a,b]$. Then given $a,b\in I$...
Theorem 6.1.9 Let $f:[a,b]\to\mathbb{R}$ be a bounded real valued Riemann integrable function with $Range f \subset [c,d]$. Let $\varphi:[c,d]\to\mathbb{R}$ ...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Theorem 8.4.1 Suppose $f_n\in \mathscr{R}[a,b]$ for all $n\in\mathbb{N}$ ans suppose that the sequence $\{f_n\}$ converges uniformly to $f$ on $[a,b]$. Then ...
Theorem 8.3.1 Suppose $\{f_n\}$ is a sequence of real-valued functions that converges uniformly to a function $f$ on a subset $E$ of $\mathbb{R}$. Let $p$ be...
Lemma 1.1.0 (De Morgan’s law) (1) $(\cup_{i\in I} A_i)^c = \cap_{i\in I}A^c_i$
Lemma 1.1.0 (De Morgan’s law) (1) $(\cup_{i\in I} A_i)^c = \cap_{i\in I}A^c_i$
Lemma 1.1.0 (De Morgan’s law) (1) $(\cup_{i\in I} A_i)^c = \cap_{i\in I}A^c_i$
Lemma 1.1.0 (De Morgan’s law) (1) $(\cup_{i\in I} A_i)^c = \cap_{i\in I}A^c_i$
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition (Ordered Set) Let $S$ be a set. An order on $S$ is a relation, denoted by $<$, with the following property
Definition 1.7.2 For each positive integer $n\in \mathbb{N}$, let \(\mathbb{N}_n:=\{1,2,\ldots,n \}\). If $A$ is a set, we say (a) $A$ is finite if $A\sim \...
Definition 1.7.2 For each positive integer $n\in \mathbb{N}$, let \(\mathbb{N}_n:=\{1,2,\ldots,n \}\). If $A$ is a set, we say (a) $A$ is finite if $A\sim \...
Theorem 2.1.3 (Triangular inequality) For all $x,y\in \mathbb{R}, \lvert x+y\rvert\leq \vert x\rvert+\vert y\rvert$
Theorem 2.1.3 (Triangular inequality) For all $x,y\in \mathbb{R}, \lvert x+y\rvert\leq \vert x\rvert+\vert y\rvert$
Theorem 2.1.3 (Triangular inequality) For all $x,y\in \mathbb{R}, \lvert x+y\rvert\leq \vert x\rvert+\vert y\rvert$
Theorem 2.1.3 (Triangular inequality) For all $x,y\in \mathbb{R}, \lvert x+y\rvert\leq \vert x\rvert+\vert y\rvert$
Definition 2.3.1 A sequence \(\{a_n\}\) is said to be (a) monotone increasing if $a_n \leq a_{n+1}$ for all $n\in\mathbb{N}$ (b) monotone decreasing if $a_...
Definition 2.3.1 A sequence \(\{a_n\}\) is said to be (a) monotone increasing if $a_n \leq a_{n+1}$ for all $n\in\mathbb{N}$ (b) monotone decreasing if $a_...
Definition 2.3.1 A sequence \(\{a_n\}\) is said to be (a) monotone increasing if $a_n \leq a_{n+1}$ for all $n\in\mathbb{N}$ (b) monotone decreasing if $a_...
Definition 2.4.1 Let \(\{p_n\}\) be a sequence and let \(\{n_k\}\) be strictly increasing sequence, i.e. $n_1 < n_2 <n_3 < \cdots$. We call \(\{p_{n...
Definition 2.4.1 Let \(\{p_n\}\) be a sequence and let \(\{n_k\}\) be strictly increasing sequence, i.e. $n_1 < n_2 <n_3 < \cdots$. We call \(\{p_{n...
Definition 2.4.1 Let \(\{p_n\}\) be a sequence and let \(\{n_k\}\) be strictly increasing sequence, i.e. $n_1 < n_2 <n_3 < \cdots$. We call \(\{p_{n...
Definition 2.5.1 Let $\{s_n\}$ be a sequence in $\mathbb{R}$. The limit superior of $\{s_n\}$, denoted as $\limsup_{n\to\infty}s_n$, is defined as
Definition 2.5.1 Let $\{s_n\}$ be a sequence in $\mathbb{R}$. The limit superior of $\{s_n\}$, denoted as $\limsup_{n\to\infty}s_n$, is defined as
The sample space $\Omega$ is the set of all possible outcomes of an experiment. Points in $\omega \in \Omega$ are outcomes or realizations.
Distribution Function Let $X$ be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$. The distribution function (cumulative distribution functi...
Distribution Function Let $X$ be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$. The distribution function (cumulative distribution functi...
Distribution Function Let $X$ be a random variable on $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu)$. The distribution function (cumulative distribution functi...
Notation Let \(\mathfrak{B}=\{\mathbf{v}_1, \ldots, \mathbf{v}_n \} \text{ is a basis for } V.\) Define a function \([\cdot]_{\mathfrak{B}}:V \rightarr...
Notation Let \(\mathfrak{B}=\{\mathbf{v}_1, \ldots, \mathbf{v}_n \} \text{ is a basis for } V.\) Define a function \([\cdot]_{\mathfrak{B}}:V \rightarr...
Notation Let \(\mathfrak{B}=\{\mathbf{v}_1, \ldots, \mathbf{v}_n \} \text{ is a basis for } V.\) Define a function \([\cdot]_{\mathfrak{B}}:V \rightarr...
Definition Let \(\{p_n\}_{n=1}^\infty\) be a sequence in $\mathbb{R}$. The sequence is a Cauchy sequence if $\forall \epsilon >0, \exists N\in \mathbb{N}$...
Theorem 3.1.13 $U \subset \mathbb{R}$ is open $\Rightarrow$ \(\exists \{I_n\}\): a finite or countable family of pairwise disjoint union of open intervals su...
Theorem 3.2.5 (a) $K$ is compact $\Rightarrow$ $K$ is closed and bounded
Theorem 3.2.5 (a) $K$ is compact $\Rightarrow$ $K$ is closed and bounded
Theorem 3.2.5 (a) $K$ is compact $\Rightarrow$ $K$ is closed and bounded
Definition of Cantor Set For each $P_i$ is non empty compact set and $P_0 \supset P_1 \supset P_2 \cdots$. Define $P$ as follows: \(\begin{align} P := \cap_{...
Definition of Cantor Set For each $P_i$ is non empty compact set and $P_0 \supset P_1 \supset P_2 \cdots$. Define $P$ as follows: \(\begin{align} P := \cap_{...
4.1.1 Definition $E \subset \mathbb{R}, f: E \rightarrow \mathbb{R}$: a function, $p \in E^\prime$. $f$ has a limit at p if there exists $L\in \mathbb{R}$ su...
4.1.1 Definition $E \subset \mathbb{R}, f: E \rightarrow \mathbb{R}$: a function, $p \in E^\prime$. $f$ has a limit at p if there exists $L\in \mathbb{R}$ su...
4.1.1 Definition $E \subset \mathbb{R}, f: E \rightarrow \mathbb{R}$: a function, $p \in E^\prime$. $f$ has a limit at p if there exists $L\in \mathbb{R}$ su...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 1 $\cdot: G\times G \to G$ is binary operation where we write $x\cdot y =xy$ for $x,y\in G$. $(G,\cdot)$ is group if it satisfies the followings ...
Definition 4.2.1 $f:E\to \mathbb{R}$ is continuous at $p\in E$, if $\forall \epsilon >0, \exists \delta >0$ such that $|x-p|<\delta \Rightarrow |f(...
Lemma 1
Lemma 1
Definition 4.3.1 Let $E$ be a subset of $\mathbb{R}$ and let $f:E\to\mathbb{R}$ be a function. The function $f$ is uniformly continuous on $E$ if $\forall ...
Definition 4.3.1 Let $E$ be a subset of $\mathbb{R}$ and let $f:E\to\mathbb{R}$ be a function. The function $f$ is uniformly continuous on $E$ if $\forall ...
Definition 4.4.1 $E\subset \mathbb{R}, f:E\to\mathbb{R}, p$ is a limit point of $E\cap (p,\infty)$. $f$ has a right limit at $p$ if there exists a $L\in\math...
Definition 4.4.1 $E\subset \mathbb{R}, f:E\to\mathbb{R}, p$ is a limit point of $E\cap (p,\infty)$. $f$ has a right limit at $p$ if there exists a $L\in\math...
Definition 5.1.1 Let $I\subset \mathbb{R}$ be an interval and let $f:I\rightarrow\mathbb{R}$ be a function. Fix a $p\in I$. The derivative of $f$ at $p$ is ...
Definition 5.1.1 Let $I\subset \mathbb{R}$ be an interval and let $f:I\rightarrow\mathbb{R}$ be a function. Fix a $p\in I$. The derivative of $f$ at $p$ is ...
Definition 5.2.1 Let $E\subset \mathbb{R}$ be a set and let $f:E\to\mathbb{R}$.
Definition 5.2.1 Let $E\subset \mathbb{R}$ be a set and let $f:E\to\mathbb{R}$.
Theorem 4.2.13 (Intermediate Value Theorem for derivative) Let $f:I\to\mathbb{R}$ be differentiable function on the interval $I=[a,b]$. Then given $a,b\in I$...
Theorem 4.2.13 (Intermediate Value Theorem for derivative) Let $f:I\to\mathbb{R}$ be differentiable function on the interval $I=[a,b]$. Then given $a,b\in I$...
Darboux Theorem $f:[a,b]\to\mathbb{R}$ is differentiable on $[a,b]$. Assume that $f^\prime(a)<f^\prime(b)$. Then $\forall\lambda \in (f^\prime(a), f^\prim...
Darboux Theorem $f:[a,b]\to\mathbb{R}$ is differentiable on $[a,b]$. Assume that $f^\prime(a)<f^\prime(b)$. Then $\forall\lambda \in (f^\prime(a), f^\prim...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Theorem 6.1.9 Let $f:[a,b]\to\mathbb{R}$ be a bounded real valued Riemann integrable function with $Range f \subset [c,d]$. Let $\varphi:[c,d]\to\mathbb{R}$ ...
Definition Let $\{a_n\}$ be a sequence. Define a new sequence of $s_n := \sum_{k=1}^na_k$ for $n\geq 1$. We call the $s_n$ is the $n$-th partial sum of $\{a_...
Definition Let $\{a_n\}$ be a sequence. Define a new sequence of $s_n := \sum_{k=1}^na_k$ for $n\geq 1$. We call the $s_n$ is the $n$-th partial sum of $\{a_...
Definition Let $\{a_n\}$ be a sequence. Define a new sequence of $s_n := \sum_{k=1}^na_k$ for $n\geq 1$. We call the $s_n$ is the $n$-th partial sum of $\{a_...
Theorem 7.2.1 Let $\{a_k\}$ and $\{b_k\}$ be a sequence of real numbers. Set $A_0:=0, A_n:=\sum_{k=1}^n a_k$ for $n\geq 1$. Then if $1\leq p \leq q$,
Theorem 7.2.1 Let $\{a_k\}$ and $\{b_k\}$ be a sequence of real numbers. Set $A_0:=0, A_n:=\sum_{k=1}^n a_k$ for $n\geq 1$. Then if $1\leq p \leq q$,
Theorem 7.2.1 Let $\{a_k\}$ and $\{b_k\}$ be a sequence of real numbers. Set $A_0:=0, A_n:=\sum_{k=1}^n a_k$ for $n\geq 1$. Then if $1\leq p \leq q$,
Theorem 7.2.1 Let $\{a_k\}$ and $\{b_k\}$ be a sequence of real numbers. Set $A_0:=0, A_n:=\sum_{k=1}^n a_k$ for $n\geq 1$. Then if $1\leq p \leq q$,
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Definition 8.1.1 (Pointwise Convergence) A sequence of real valued functions $\{f_n\}$ defined on a set $E (\subset \mathbb{R})$ converges pointwise on $E$ i...
Theorem 8.3.1 Suppose $\{f_n\}$ is a sequence of real-valued functions that converges uniformly to a function $f$ on a subset $E$ of $\mathbb{R}$. Let $p$ be...
Theorem 8.4.1 Suppose $f_n\in \mathscr{R}[a,b]$ for all $n\in\mathbb{N}$ ans suppose that the sequence $\{f_n\}$ converges uniformly to $f$ on $[a,b]$. Then ...
Definition 7.19 Let $\{f_n\}$ be a sequence of functions defined on a set $E$. We say that $\{f_n\}$ is pointwise bounded on $E$ if the sequence $\{f_n(x)\}$...
Definition 7.19 Let $\{f_n\}$ be a sequence of functions defined on a set $E$. We say that $\{f_n\}$ is pointwise bounded on $E$ if the sequence $\{f_n(x)\}$...
Theorem (Ascoli-Azrela) Let $\{f_n\}$ be a sequence of functions defined on a set $K$. If $K$ is compact, $\{f_n\}$ is pointwise bounded on $K$, $\{f_n\}$ is...
Theorem (Ascoli-Azrela) Let $\{f_n\}$ be a sequence of functions defined on a set $K$. If $K$ is compact, $\{f_n\}$ is pointwise bounded on $K$, $\{f_n\}$ is...
Theorem (Ascoli-Azrela) Let $\{f_n\}$ be a sequence of functions defined on a set $K$. If $K$ is compact, $\{f_n\}$ is pointwise bounded on $K$, $\{f_n\}$ is...
Definition (Topology) A topology on a set $X$ is a collection $\mathfrak{T}$ having the following properties: (1) $\emptyset$ and $X$ are in $\mathfrak{T}$ (...
Definition (Product Topology on $X \times Y$) Let $(X,\mathfrak{T}_X)$ and $(Y,\mathfrak{T}_Y)$ be topological spaces. The product space topology on $X\times...
Definition (Product Topology on $X \times Y$) Let $(X,\mathfrak{T}_X)$ and $(Y,\mathfrak{T}_Y)$ be topological spaces. The product space topology on $X\times...
Definition (Closed) A subset $A$ of a topological space $X$ is said to be closed if the set $X-A$ is open.
Definition (Closed) A subset $A$ of a topological space $X$ is said to be closed if the set $X-A$ is open.
Definition Let $A\in \mathfrak{M}_{m\times n}(\mathbb{R})$ be a matrix. We define the column rank of $A$ as dimension of $\langle [A]^1, \ldots, [A]^n \rangl...
Definition Let $A\in \mathfrak{M}_{m\times n}(\mathbb{R})$ be a matrix. We define the column rank of $A$ as dimension of $\langle [A]^1, \ldots, [A]^n \rangl...
Definition Let $A\in \mathfrak{M}_{m\times n}(\mathbb{R})$ be a matrix. We define the column rank of $A$ as dimension of $\langle [A]^1, \ldots, [A]^n \rangl...
Proposition 8.2.6 Let $\Omega$ be a measurable set, and let $f: \Omega\rightarrow [0,\infty]$ and $g: \Omega\rightarrow [0,\infty]$ be non-negative measurabl...
Proposition 8.2.6 Let $\Omega$ be a measurable set, and let $f: \Omega\rightarrow [0,\infty]$ and $g: \Omega\rightarrow [0,\infty]$ be non-negative measurabl...
Definition Let $V$ and $W$ be finite dimensional inner product spaces over the same field $F$ and let $T:V\to W$ be a linear transformation. Let $L:\ker T^\p...
Basic Knowledge We focus on a class of functions
Basic Knowledge We focus on a class of functions
Basic Knowledge We focus on a class of functions
Definition 1.1 Let $f,g:\mathbb{R}\to\mathbb{C}$ be $2\pi$-periodic functions. The convolution $f*g$ of $f$ and $g$ is the function defined by $[-\pi, \pi]$ ...
Definition 1.1 Let $f,g:\mathbb{R}\to\mathbb{C}$ be $2\pi$-periodic functions. The convolution $f*g$ of $f$ and $g$ is the function defined by $[-\pi, \pi]$ ...
Definition 1.1 Given a sequence $\{c_n\}$, let $s_n:=\sum_{k=0}^nc_k$ be the sequence of partial sums. We define $N$-th Cesaro mean $\sigma_N$ of the sequenc...
Definition 1.1 Given a sequence $\{c_n\}$, let $s_n:=\sum_{k=0}^nc_k$ be the sequence of partial sums. We define $N$-th Cesaro mean $\sigma_N$ of the sequenc...
Preliminaries Suppose one has an infinite plate $(\mathbb{R}^2)$ with an initial heat distribution. Let $u(x,y)$ denote the temperature of the place at posit...
Preliminaries Suppose one has an infinite plate $(\mathbb{R}^2)$ with an initial heat distribution. Let $u(x,y)$ denote the temperature of the place at posit...
Preliminaries Let $\{a_n: n \in\mathbb{Z}\}$ denote a sequence of complex numbers. We define $\ell_2$ norm of $\{a_n\}$ by
Preliminaries Let $\{a_n: n \in\mathbb{Z}\}$ denote a sequence of complex numbers. We define $\ell_2$ norm of $\{a_n\}$ by
Preliminaries Let $\{a_n: n \in\mathbb{Z}\}$ denote a sequence of complex numbers. We define $\ell_2$ norm of $\{a_n\}$ by
Corollary 1.2 (Parseval’s Identity) Let $f$ be integrable function, and $a_n= \hat{f}(n)$. Then $\lim_{N\to\infty}\sum_{n=-N}^N\lvert a_n\rvert^2$ converges ...
Corollary 1.2 (Parseval’s Identity) Let $f$ be integrable function, and $a_n= \hat{f}(n)$. Then $\lim_{N\to\infty}\sum_{n=-N}^N\lvert a_n\rvert^2$ converges ...
Corollary 1.2 (Parseval’s Identity) Let $f$ be integrable function, and $a_n= \hat{f}(n)$. Then $\lim_{N\to\infty}\sum_{n=-N}^N\lvert a_n\rvert^2$ converges ...
Corollary 1.2 (Parseval’s Identity) Let $f$ be integrable function, and $a_n= \hat{f}(n)$. Then $\lim_{N\to\infty}\sum_{n=-N}^N\lvert a_n\rvert^2$ converges ...
Exercise 2.8 Verify that $\frac{1}{2i}\sum_{n\neq 0} \frac{e^{inx}}{n}$ is the Fourier series of the $2\pi$-periodic sawtooth function, defined by $f(0)=0$, ...
Exercise 2.8 Verify that $\frac{1}{2i}\sum_{n\neq 0} \frac{e^{inx}}{n}$ is the Fourier series of the $2\pi$-periodic sawtooth function, defined by $f(0)=0$, ...
Definition 1.1 A $\mathscr{C}^1$ mapping
Definition 1.1 A $\mathscr{C}^1$ mapping
Definition 1.1 Let $x\in\mathbb{R}$ be a real number. Then
Definition 1.1 Let $x\in\mathbb{R}$ be a real number. Then
Theorem If $0<\alpha <1$, then the function
Theorem If $0<\alpha <1$, then the function
Definition We define (if the limit exists)
Definition We define (if the limit exists)
Definition We define (if the limit exists)
Proposition (Multiplication formula)
Proposition (Multiplication formula)
Proposition (Multiplication formula)