Convolution and Good Kernels

5 minute read

Definition 1.1

Let $f,g:\mathbb{R}\to\mathbb{C}$ be $2\pi$-periodic functions. The convolution $f*g$ of $f$ and $g$ is the function defined by $[-\pi, \pi]$ by

\[\begin{align*} (f*g)(x) =\frac{1}{2\pi}\int_{-\pi}^\pi f(y) g(x-y)dy \end{align*}\]

Remark

(1) Convolution as weighted average.

(2) Turns out that many important construction can be expressed in terms of convolution. For example, consider $f* D_N$, the Dirichlet kernel

\[\begin{align*} (f*D_N)(x) &= \frac{1}{2\pi} \int_{-\pi}^\pi f(y) \sum_{n=-N}^N e^{in(x-y)}dy \\ &=\sum_{n=-N}^N e^{inx}\frac{1}{2\pi} \int_{-\pi}^\pi f(y) e^{-iny}dy \\ &=\sum_{n=-N}^N \hat{f}(n)e^{inx} \\ &= S_N(f)(x) \end{align*}\]

is $N$-th partial sum of the Fourier series. However, $\lim_{N\to\infty}(f*D_N)(x)\neq f(x)$.

Theorem 2.1 (Basic properties)

Let $f,g,h$ be $2\pi$-periodic integrable functions, and $c\in\mathbb{C}$. Then

(1) (Linearity 1) $f*(g+h) = f*g + f*h$

(2) (Linearity 2)$(cf)*g= c(f*g)=f*(cg)$

(3) (Commutativity) $f*g = g*f$

(4) (Associativity) $(f*g) * h= f*(g*h)$

(5) (Continuity) $f*g$ is continuous

(6) Multiplication $\widehat{f*g}(n) =\hat{f}(n)\hat{g}(n)$

Note that $L^1(\pi)=\{f: \text{integrable}\mid \int_{-\pi}^\pi \lvert f(x)\rvert dx <\infty\}$ with convolution operation is called Banach algebra.

<Proof>

(1) Let $x\in [-\pi, \pi]$ be given.

\[\begin{align*} (f*(g+h))(x) &= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left[g(x-y)+h(x-y) \right]dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(y) g(x-y) dy + \frac{1}{2\pi}\int_{-\pi}^\pi f(y)h(x-y)dy \\ &=(f*g)(x) + (f*h)(x) \end{align*}\]

$\therefore f*(g+h) = f*g + f*h$

(2) Let $x\in [-\pi, \pi]$ be given.

\[\begin{align*} ((cf)*g )(x) &= \frac{1}{2\pi} \int_{-\pi}^\pi (cf)(y) g(x-y)dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi cf(y) g(x-y)dy \\ &=\frac{c}{2\pi}\int_{-\pi}^\pi f(y) g(x-y) dy \\ &= c(f*g)(x) \end{align*}\]

Similarly,

\[\begin{align*} ((cf)*g)(x) &= \frac{1}{2\pi}\int_{-\pi}^\pi cf(y)g(x-y)dy \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f(y) cg(x-y)dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(y) (cg)(x-y) dy \\ &= (f*(cg))(x) \end{align*}\]

$\therefore (cf)* g= c(f*g)=f*(cg)$

(3) Let $x\in [-\pi, \pi]$ be given. With Fubini theorem,

\[\begin{align*} ((f*g)*h)(x) &= \frac{1}{2\pi} \int_{-\pi}^\pi (f*g)(y) h(x-y)dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi \left( \frac{1}{2\pi}\int_{-\pi}^\pi f(z)g(y-z)dz\right) h(x-y)dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(z)\left(\frac{1}{2\pi}\int_{-\pi}^\pi g(y-z)h(x-y)dy \right)dz \end{align*}\]

Let $w:= y-z$. With the change of variable,

\[\begin{align*} ((f*g)*h)(x) &= \frac{1}{2\pi}\int_{-\pi}^\pi f(z)\left( \frac{1}{2\pi}\int_{-\pi-z}^{\pi-z}g(w)h(x-z-w)dw \right)dz\\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(z)\left(\frac{1}{2\pi}\int_{-\pi}^\pi g(w)h(x-z-w)dw \right)dz\\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(z) (g*h)(x-z)dz \\ &=(f*(g*h))(x) \end{align*}\]

$\therefore f*(g*h)=(f*g)*h$.

(4) Let $x\in [-\pi, \pi]$ be given.

\[\begin{align*} (g*f)(x) &= \frac{1}{2\pi}\int_{-\pi}^\pi f(x-y)g(y)dy \\ &=\frac{1}{2\pi}\int_{x+\pi}^{x-\pi } -f(w) g(x-w) dw \quad ( w:= x-y) \\ &= \frac{1}{2\pi}\int_{x-\pi}^{x+\pi} f(w) g(x-w)dw \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f(w)g(x-w) dw \\ &=(f*g)(x) \end{align*}\]

$\therefore f*g = g* f$.

(6) Let $n\in\mathbb{Z}$ be given.

\[\begin{align*} \widehat{f*g}(n) & = \frac{1}{2\pi}\int_{-\pi}^\pi (f*g)(x) e^{-inx}dx \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi \left(\frac{1}{2\pi}\int_{-\pi}^\pi f(y) g(x-y)dy \right)e^{-inx}dx \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f(y)\left(\frac{1}{2\pi}\int_{-\pi}^\pi g(x-y)e^{-inx}dx \right) dy \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f(y) e^{-iny} \left(\int_{-\pi}^\pi g(x-y)e^{-in(x-y)} dx \right)dy \\ &= \frac{1}{2\pi}\int_{-\pi}^\pi f(y) e^{-iny}\left(\frac{1}{2\pi}\int_{-\pi}^\pi g(w) e^{-inw}dw \right)dy \\ &=\frac{1}{2\pi}\int_{-\pi}^\pi f(y) e^{-iny} \hat{g}(n) dy \\ &= \hat{f}(n) \hat{g}(n) \end{align*}\]

(5) First, we assume that $f$ and $g$ are continuous on $-[\pi, \pi]$. Let $\epsilon >0$ be given. We want to show that there exists a $\delta>0$ such that

\[\begin{align*} \lvert x_1 -x_2 \rvert < \delta \Rightarrow \lvert (f*g)(x_1) - (f*g)(x_2)\rvert < \epsilon. \end{align*}\]

Note that $g$ is continuous on the compact set $[-\pi, \pi]$, $g$ is uniformly continuous on $[-\pi, \pi]$. Thus, there exists $\delta>0$ such that $\lvert p -q \rvert <\delta \Rightarrow\lvert g(p) - g(q)\rvert <\epsilon/ B$, where $B$ is a bound on $f$, i.e., $\lvert f(x)\rvert \leq B$ for all $x\in[-\pi, \pi]$. Now consider, \(\begin{align*} \lvert (f*g)(x_1) - (f*g)(x_2) \rvert &= \left\lvert \frac{1}{2\pi}\int_{-\pi}^\pi f(y)[g(x_1-y)-g(x_2)]dy \right\rvert \\ &\leq \frac{1}{2\pi}\int_{-\pi}^\pi \lvert f(y) \rvert \lvert g(x_1-y) - g(x_2-y)\rvert dy \\ &\leq \frac{1}{2\pi}\int_{-\pi}^\pi B \frac{\epsilon}{B}dy \\ &<\epsilon. \end{align*}\)

$\therefore f*g$ is continuous on $[-\pi, \pi]$.

Lemma $(L^1$ approximation$)$

Given any integrable function $f$ on the circle, there exists a sequence of continuous function $\{f_k\}$ such that

\[\begin{align*} \sup_{x\in [-\pi, \pi]} \lvert f_k(x)\rvert \leq B\quad \text{for all } k=1,2,\ldots, \end{align*}\]

and

\[\begin{align*} \lim_{k\to\infty} \frac{1}{2\pi}\int_{-\pi}^\pi \lvert f -f_k\rvert dx = 0. \end{align*}\]

Now, suppose that $f,g$ are integrable functions. By the lemma, there are sequences $\{f_k\}$ and $\{g_k\}$ such that

\[\begin{align*} \frac{1}{2\pi}\int_{-\pi}^\pi \lvert f(x)-f_k(x) \rvert dx &\to 0 \\ \frac{1}{2\pi}\int_{-\pi}^\pi \lvert g(x) - g_k(x) \rvert dx &\to 0 \end{align*}\]

as $k\to \infty$. It will suffice to show that $f_k * g_k$ uniformly converges to $f*g$ on $[-\pi, \pi]$. We know that $f_k*g_k$ is continuous by the previous proof. If $f_k*g_k$ uniformly converges to $f*g$, then $f*g$ is still continuous by the uniform convergence.

\[\begin{align*} \left\lvert f*g - f_k*g_k\right\rvert &= \left\lvert (f-f_k)*g + f_k * (g-g_k)\right\rvert \\ &\leq \left \lvert \frac{1}{2\pi}\int_{-\pi}^\pi[f(x-y)-f_k(x-y)]g(y)dy\right\rvert + \left \lvert \frac{1}{2\pi}\int_{-\pi}^\pi[g(x-y)-g_k(x-y)]f_k(y)dy\right\rvert \\ &\leq \frac{1}{2\pi}\int_{-\pi}^\pi \lvert f(x-y)-f_k(x-y)\rvert \lvert g(y) \rvert dy + \frac{1}{2\pi}\int_{-\pi}^\pi \lvert g(x-y)-g_k(x-y) \rvert \lvert f_k(y)\rvert dy \\ &\leq \frac{B_1}{2\pi}\int_{-\pi}^\pi \lvert f(x-y)-f_k(x-y) \rvert dy + \frac{B_2}{2\pi}\int_{-\pi}^\pi \lvert g(x-y)-g_k(x-y) \rvert dy \\ &= \frac{B_1}{2\pi}\int_{x+\pi}^{x-\pi} - \lvert f(w) - f_k(w) \rvert dw + \frac{B_2}{2\pi}\int_{x+\pi}^{x-\pi}-\lvert g(w)-g_k(w)\rvert dw\\ &=\frac{B_1}{2\pi}\int_{-\pi}^\pi \lvert f(w) - f_k(w) \rvert dw + \frac{B_2}{2\pi}\int_{-\pi}^\pi\lvert g(w)-g_k(w)\rvert dw \\ &< \frac{\epsilon}{2} + \frac{\epsilon}{2}. \end{align*}\]

$\therefore f_k*g_k \rightrightarrows f*g$ and $f*g$ is continuous.

\[\tag*{$\square$}\]

Definition 3.1

Let $\{K_n: \mathbb{T}\to \mathbb{R} \}$ be a sequence of functions on the circle. If

(1) (Sliding in condition) $\frac{1}{2\pi}\int_{-\pi}^\pi K_n(x)dx=1$ for all $n\in\mathbb{N}$

(2) there exists $M>0$ such that $\frac{1}{2\pi}\int_{-\pi}^\pi\lvert K_n(x)\rvert dx <M$ for all $n\in\mathbb{N}$, and

(3) given any $\delta >0$,

\[\begin{align*} \int_{\delta \leq \lvert x \rvert \leq \pi}\lvert K_n(x) \rvert dx \to 0 \end{align*}\]

as $n\to \infty$, then we $\{K_n\}$ is a family of good kernels or more commonly an approximation to the identity.

where $\theta\in [-\pi, \pi]$ and $r\in [0,1)$.

Theorem 3.2

Let $f$ be an integrable function on the circle and let $\{K_n\}$ be a family of good kernels. Then

\[\begin{align*} \lim_{n\to\infty} (f*K_n)(x_0) = f(x_0) \end{align*}\]

where $f$ is continuous at $x_0$. If $f$ is continuous everywhere, then the above limit is uniform.

<Proof>

Consider,

\[\begin{align*} \lvert (f*K_n)(x_0) - f(x_0) \rvert &= \left\lvert \frac{1}{2\pi}\int_{-\pi}^\pi K_n(y) f(x_o-y) dy- f(x_0)\right\rvert \\ &= \left\lvert \frac{1}{2\pi}\int_{-\pi}^\pi K_n(y)[ f(x_0-y)-f(x_0)]dy\right\rvert \end{align*}\]

Since $f$ is continuous at $x_0$, we can choose $\delta>0$ such that

\[\begin{align*} \lvert y \rvert <\delta \Rightarrow \lvert f(x_0-y)-f(x_0)\rvert <\epsilon. \end{align*}\]

Since $f$ is integrable function, $f$ is bounded. Let where $B=\sup_{x\in[-\pi, \pi]}\lvert f(x) \rvert \in \mathbb{R}$. Then we get,

\[\begin{align*} \left \lvert \frac{1}{2\pi}\int_{-\pi}^\pi K_n(y) [f(x_0-y)-f(x_0)]dy\right\rvert &\leq \left\lvert \frac{1}{2\pi}\int_{\lvert y \rvert <\delta}K_n(y)[f(x_0-y)-f(x_0)]dy\right\rvert \\&+ \left\lvert \frac{1}{2\pi}\int_{\delta \leq \lvert y \rvert \leq\pi} K_n(y) [f(x_o-y)-f(x_0)] dy \right\rvert \\ &\leq \frac{\epsilon}{2\pi} \int_{\lvert y \rvert <\delta} \lvert K_n(y)\rvert dy + \frac{1}{2\pi}\int_{\delta \leq \lvert y \rvert \leq \pi} \lvert K_n(y) \rvert \lvert f(x_0-y)-f(x_0)\rvert dy \\ &\leq \frac{\epsilon M}{2\pi} + \frac{2B}{2\pi} \int_{\delta \leq \lvert y \rvert \leq \pi }\lvert K_n(y) \rvert dy \\ &\approx 0 \end{align*}\]

since \(\begin{align*} \int_{\delta \leq \lvert y \rvert \leq \pi} \lvert K_n(y) \vert dy \to 0 \end{align*}\)

as $n\to\infty$. If $f$ is continuous on the circle, then $f$ is uniformly continuous on the circle, i.e., $\delta$ does not depend on $x_0$. Thus, $f*K_n \rightrightarrows f$.

\[\tag*{$\square$}\]

Reference