Properties of the Riemann Integral
Theorem 6.1.9 Let $f:[a,b]\to\mathbb{R}$ be a bounded real valued Riemann integrable function with $Range f \subset [c,d]$. Let $\varphi:[c,d]\to\mathbb{R}$ ...
Theorem 6.1.9 Let $f:[a,b]\to\mathbb{R}$ be a bounded real valued Riemann integrable function with $Range f \subset [c,d]$. Let $\varphi:[c,d]\to\mathbb{R}$ ...
Definition (upper sum, lower sum) Let $[a,b]$ with $a<b$ be a closed and bounded interval in $\mathbb{R}$. By a partition of $\mathscr{P}$ of $[a,b]$ we m...
Darboux Theorem $f:[a,b]\to\mathbb{R}$ is differentiable on $[a,b]$. Assume that $f^\prime(a)<f^\prime(b)$. Then $\forall\lambda \in (f^\prime(a), f^\prim...
Theorem 4.2.13 (Intermediate Value Theorem for derivative) Let $f:I\to\mathbb{R}$ be differentiable function on the interval $I=[a,b]$. Then given $a,b\in I$...
Definition 5.2.1 Let $E\subset \mathbb{R}$ be a set and let $f:E\to\mathbb{R}$.