Weyl’s Equidistribution Theorem
Definition 1.1
Let $x\in\mathbb{R}$ be a real number. Then
(1) Let $[x]$, the integer part of $x$, denote the greatest integer less than or equal to $x$.
(2) Let $\langle x\rangle := x -[x]$ denote the fractional part of $x$.
(3) Given $x,y\in\mathbb{R}$, if $x-y\in\mathbb{Z}$ we say
\[\begin{align*} x \equiv y \text{ mod } \mathbb{Z} \text{ or } x\equiv y \text{ mod} 1 \end{align*}\]Of course $x\equiv y$ if and only if $\langle x \rangle = \langle y \rangle$.
Problem
Consider the collection $\{ \langle n\gamma\rangle : n\in\mathbb{N}\}$: is it dense in $[0,1)$? Kronecker’s theorem: yes if $\gamma\notin\mathbb{Q}$.
Definition 1.2 (Definition of equidistribued sequence)
For every interval $(a,b)\subset [0,1)$, if
\[\begin{align*} \lim_{N\to\infty} \frac{\lvert \{ n\in \{1,2,\ldots, N\}: \xi_n\in (a,b)\}\rvert }{N}=b-a, \end{align*}\]then we call $\{ \xi_n\}$ an equidistributed sequence.
Theorem 1.3 (Weyl’s Equidistribution theorem)
If $\gamma\notin \mathbb{Q}$, then $\{\langle n\gamma \rangle\}$ is equidistributed in $[0,1)$.
Observation
Let $\chi_{(a,b)}$ denote the characteristic function of $(a,b)\subset [0,1)$, extended as a 1-periodic function. Then we observe that
\[\begin{align*} \lvert \{ 1\leq n \leq N: \langle n\gamma \rangle \in (a,b)\}\rvert = \sum_{n=1}^N \chi_{(a,b)}(n\gamma) \end{align*}\]Then the theorem 1.3 can be rephrased as follows:
Theorem 1.5
Given any $\gamma \notin \mathbb{Q}$, and any $(a,b)\in [0,1)$,
\[\begin{align*} \lim_{N\to\infty} \frac{1}{N} \sum_{n=1}^N \chi_{(a,b)}(n\gamma) = \int_0^1 \chi_{(a,b)}(x) dx \end{align*}\]Lemma
If $f$ is continuous and 1-periodic on $[0,1)$, and $\gamma \notin \mathbb{Q}$, then
\[\begin{align*} \frac{1}{N}\sum_{n=1}^N f(n\gamma) \rightarrow \int_0^1 f(x) dx. \end{align*}\]<Proof>
- Case: $f\in \{1, e^{2\pi ix}, \ldots, e^{2\pi ikx},\ldots \}$. For $f\equiv 1$, it is obvious. Otherwise,
Since $e^{2\pi ikx}\neq 1$ and
\[\begin{align*} \frac{1}{N} \sum_{n=1}^N f(n\gamma) &= \frac{1}{N} \sum_{n=1}^N e^{2\pi kn\gamma} \\ &=\frac{e^{2\pi k\gamma}}{N} \frac{1-e^{2\pi ikN\gamma}}{1-e^{2\pi ik\gamma}} \end{align*}\]$\frac{1-e^{2\pi ikN\gamma}}{1-e^{2\pi ik\gamma}}$ is bounded, it goes to $0$ as $N\to \infty$.
-
Case: triogonometric polynomials. The problem is linear, so the lemma holds for linear combinations of exponentials.
-
Case: $f$ is a continuous periodic function. Given $\epsilon>0$, choose trigonometric polynomial $P$ such that
By case 2,
\[\begin{align*} \left\lvert \sum_{n=1}^N P(n\gamma) - \int_0^1 P(x)dx \right\rvert < \frac{\epsilon}{3}. \end{align*}\]Then we get the conclusion as follows:
\[\begin{align*} \left\lvert \frac{1}{N}\sum_{n=1}^N f(n\gamma) - \int_0^1 f(x)dx \right\rvert &\leq \left\lvert \frac{1}{N} \sum_{n=1}^N f(n\gamma) - \frac{1}{N}\sum_{n=1}^N P(n\gamma)\right\rvert \\ &+ \left\lvert \frac{1}{N}\sum_{n=1}^N P(n\gamma) - \int_0^1 P(x)dx \right\rvert \\ &+ \left\lvert\int_0^1 P(x)dx - \int_0^1 f(x)dx \right\rvert \\ & < \epsilon \end{align*}\] \[\tag*{$\square$}\]Given $\epsilon>0$, take
\[\begin{align*} f^{+}_{\epsilon} \text{ and } f^{-}_{\epsilon} \end{align*}\]to be continuous 1-periodic function such that
1) approximate $\chi_{(a,b)}$ from above and below
2) bounded by 1
3) agree on $\chi_{(a,b)}$ except in intervals of total length $2\epsilon$.
In particular,
\[\begin{align*} f^{-}_{\epsilon}(x) \leq \chi_{(a,b)}(x)\leq f^{+}_{\epsilon}(x), \end{align*}\]and
\[\begin{align*} b-a-2\epsilon \leq \int_0^1 f^{-}_\epsilon(x) dx\quad \text{ and } \quad \int_0^1 f^{+}_\epsilon(x) dx \leq b-a+2\epsilon. \end{align*}\]Moreover,
\[\begin{align*} \frac{1}{N}\sum_{n=1}^N f^-_\epsilon(n\gamma) \leq \frac{1}{N} \sum_{n=1}^N \chi_{(a,b)}(n\gamma) \leq \frac{1}{N} \sum_{n=1}^N f^+_\epsilon(n\gamma). \end{align*}\]By the lemma,
\[\begin{align*} b-a-2\epsilon &\leq \int_0^1f^-_\epsilon(x)dx = \lim_{N\to\infty} \frac{1}{N}\sum_{n=1}^N f^-_\epsilon(n\gamma) \\ &\leq \liminf_{N\to\infty} \frac{1}{N} \chi_{(a,b)}(n\gamma) \\ &\leq \limsup_{N\to\infty} \frac{1}{N} \chi_{(a,b)}(n\gamma) \\ &\leq \lim_{N\to\infty} \frac{1}{N}\sum_{n=1}^N f^+_\epsilon(n\gamma) =\int_0^1 f^+_\epsilon (x) dx \\ &\leq b-a +2\epsilon. \end{align*}\]and the above is true for all $\epsilon$ we see the desired limit exists and equals the desired $b-a$.
\[\tag*{$\square$}\]Corollary
The lemma holds even if $f$ is Riemann integrable.
<Proof>
Note that a step function is finite linear combination of characteristic function. Assume $f$ is real-valued function and consider a partition $\mathscr{P}=\{x_0=0, \ldots, x_N=1\}$ of $[0,1]$ with $x_0 < x_1 < \cdots < x_N$. Define
\[\begin{align*} f_U(x) = \sup_{x_{j-1} \leq y \leq x_j} f(y), \quad f_L(x) = \inf_{x_{j-1}\leq y \leq x_j} f(y), \text{ for } x\in [x_{j-1}, x_j]. \end{align*}\]Then $f_L(x) \leq f(x) \leq f_U(x)$ for all $x\in [0,1]$ and
\[\begin{align*} \mathscr{L}(f, \mathscr{P})=\int_0^1 f_L(x)dx \leq \int_0^1f(x)dx\leq \int_0^1 f_U(x)dx=\mathscr{U}(f,\mathscr{P}). \end{align*}\]Since $f$ is Riemann integrable function, for a given $\epsilon >0$, there is a partition $\mathscr{P}$ such that $\int_0^1 f_U - \int_0^1 f_L\leq \epsilon$.
By Theorem 1.5,
\[\begin{align*} \frac{1}{N} \sum_{n=1}^N f_U (n\gamma) \to \int_0^1 f_U(x)dx \text{ as } N\to\infty \end{align*}\]since $f_U$ is finite linear combination of characteristic function. Similarly,
\[\begin{align*} \frac{1}{N} \sum_{n=1}^N f_L (n\gamma) \to \int_0^1 f_L(x)dx \text{ as } N\to\infty. \end{align*}\]Combining these inequalities,
\[\begin{align*} \int_0^1 f_L=\lim_{N\to\infty}\frac{1}{N} \sum_{n=1}^N f_L (n\gamma) &\leq \liminf_{N\to\infty} \frac{1}{N} \sum_{n=1}^N f (n\gamma) \\ &\leq \limsup_{N\to\infty} \frac{1}{N} \sum_{n=1}^N f (n\gamma) \\ &\leq\lim_{N\to\infty}\frac{1}{N} \sum_{n=1}^N f_L (n\gamma) \\ &=\int_0^1 f_U. \end{align*}\]Then
\[\begin{align*} \limsup_{N\to\infty}\frac{1}{N} \sum_{n=1}^N f (n\gamma) -\liminf_{N\to\infty} \frac{1}{N} \sum_{n=1}^N f (n\gamma) \leq \int_0^1 f_U -\int_0^1 f_L \leq \epsilon. \end{align*}\]Since the choice of $\epsilon>0$ is arbitrary, the limit of $\frac{1}{N} \sum_{n=1}^N f_L (n\gamma)$ exists and
\[\begin{align*} \mathscr{L}(f,\mathscr{P})\leq \frac{1}{N} \sum_{n=1}^N f (n\gamma) \leq \mathscr{U}(f, \mathscr{P}) \end{align*}\]Since $f$ is integrable, for any $\epsilon >0$ there is a partition $\mathscr{P}$ such that $\mathscr{U}(f,\mathscr{P})- \mathscr{L}(f,\mathscr{P}) <\epsilon$. Then
\[\begin{align*} \mathscr{U}(f,\mathscr{P}) \leq \mathscr{L}(f,\mathscr{P}) +\epsilon \leq \int_0^1f _\epsilon. \end{align*}\]Similarly,
\[\begin{align*} \mathscr{L}(f,\mathscr{P}) \leq \mathscr{U}(f,\mathscr{P}) -\epsilon \leq \int_0^1f -\epsilon. \end{align*}\]Thus,
\[\begin{align*} \int_0^1 f -\epsilon \leq \lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(n\gamma) \leq \int_0^1 f +\epsilon. \end{align*}\]Then we can conclude that
\[\begin{align*} \lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(n\gamma) =\int_0^1 f(x)dx \end{align*}\]\(\tag*{$\square$}\)
Reference
- Elias M. Stein and Rami Shakarchi 『Fourier Analysis: An Introduction』
- Math 139 Fourier Analysis Notes